Model Reduction of Descriptor Systems by Interpolatory Projection Methods
نویسندگان
چکیده
In this paper, we investigate interpolatory projection framework for model reduction of descriptor systems. With a simple numerical example, we first illustrate that employing subspace conditions from the standard state space settings to descriptor systems generically leads to unbounded H2 or H∞ errors due to the mismatch of the polynomial parts of the full and reducedorder transfer functions. We then develop modified interpolatory subspace conditions based on the deflating subspaces that guarantee a bounded error. For the special cases of index-1 and index-2 descriptor systems, we also show how to avoid computing these deflating subspaces explicitly while still enforcing interpolation. The question of how to choose interpolation points optimally naturally arises as in the standard state space setting. We answer this question in the framework of the H2-norm by extending the Iterative Rational Krylov Algorithm (IRKA) to descriptor systems. Several numerical examples are used to illustrate the theoretical discussion.
منابع مشابه
Krylov subspace-based model reduction for a class of bilinear descriptor systems
We consider model order reduction of bilinear descriptor systems using an interpolatory projection framework. Such nonlinear descriptor systems can be represented by a series of generalized linear descriptor systems (also called subsystems) by utilizing the Volterra-Wiener approach [22]. Standard projection techniques for bilinear systems utilize the generalized transfer function of these subsy...
متن کاملAn Iterative Model Order Reduction Scheme for a Special Class of Bilinear Descriptor Systems Appearing in Constraint Circuit Simulation
We focus on interpolatory-based model order reduction for a special class of bilinear descriptor systems in the H2-optimal framework, appearing in constraint circuit simulations. The straightforward extension of the H2-optimality conditions for ODE systems to descriptor systems generically may produce an unbounded error in the H2 or H∞ norm, or both. This arises due to the inappropriate use of ...
متن کاملInterpolatory Model Reduction of Parameterized Bilinear Dynamical Systems
Interpolatory projection methods for model reduction of nonparametric linear dynamical systems have been successfully extended to nonparametric bilinear dynamical systems. However, this is not the case for parametric bilinear systems. In this work, we aim to close this gap by providing a natural extension of interpolatory projections to model reduction of parametric bilinear dynamical systems. ...
متن کاملInterpolatory Projection Methods for Parameterized Model Reduction
We provide a unifying projection-based framework for structure-preserving interpolatory model reduction of parameterized linear dynamical systems, i.e., systems having a structured dependence on parameters that we wish to retain in the reduced-order model. The parameter dependence may be linear or nonlinear and is retained in the reduced-order model. Moreover, we are able to give conditions und...
متن کاملA novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013